报告人:Prof. Christopher Morris
时 间:2022/12/9 16:00 - 17:00
主持人:张牧涵 助理教授
Zoom:
Zoom ID: 889 5823 1188
Passcode:PSJAS1209
https://us06web.zoom.us/j/88958231188?pwd=N3FDVXM2eUxESEpuYmhEYU5UdzgvQT09
Tencent Meeting:
Meeting ID: 103-824-539
https://meeting.tencent.com/dm/XpJYMhnxakWu
Live Stream:
https://www.koushare.com/lives/room/402263
Title:Towards Understanding the Expressivity of Graph Networks
Abstract:
Graph-structured data is ubiquitous across domains ranging from chemo- and bioinformatics to image and social network analysis. To develop successful machine learning models in these domains, we need techniques mapping the graph's structure to a vectorial representation in a meaningful way -- so-called graph embeddings. Starting from the 1960s in chemoinformatics, different research communities have worked in the area under various guises, often leading to recurring ideas. Moreover, triggered by the resurgence of (deep) neural networks, there is an ongoing trend in the machine learning community to design permutation-invariant or -equivariant neural architectures capable of dealing with graph input, often denoted as neural graph networks (GNNs). However, although often successful in practice, GNN's capabilities and limits are understood to a lesser extent. In this talk, we overview some results shedding some light on the limitations and capabilities of GNNs by leveraging tools from graph theory and related areas.
Biography:
Christopher Morris studied computer science at TU Dortmund University, Germany. In 2019, interleaved with a short stint at Stanford University, he finished his Ph.D. studies at the same institution focusing on machine learning for graph and relational data. After that, he spent one year as a postdoctoral fellow at Polytechnique Montréal in the Department of Mathematical and Industrial Engineering, followed by another postdoc stay in the Computer Science Department of McGill University and as a member of Mila – Quebec AI Institute. He joined RWTH Aachen University, Germany, as a tenure-track assistant professor in the Computer Science department in June 2022.